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On O'Brien's OLS and GLS tests for 

multiple endpoints 

Brent R. Logan1 and Ajit C. Tamhane2 

Medical College of Wisconsin and Northwestern University 

Abstract: In this article we obtain some new results and extensions of the 
OLS and GLS tests proposed by O'Brien (1984) for the one-sided multivariate 
testing problem. In particular, we empirically obtain an accurate small sample 
approximation to the critical point of the OLS test. Next we give a power com- 
parison between the OLS test and a competing test proposed by L?uter(1996). 
Lastly, we extend the OLS and GLS tests to the heteroscedastic setup where 
the control and treatment populations have different covariance matrices. 

1. Introduction 

Most clinical trials are conducted to compare a treatment group with a control 

group on multiple endpoints. Often, the treatment is expected to have a positive 
effect on all endpoints. O'Brien (1984) proposed two global tests, known as the 

ordinary least squares (OLS) and generalized least squares (GLS) tests, to demon- 

strate such an overall treatment effect. In this article we obtain some new results 

and extensions of these tests. 

The following is an outline of the paper. Section 2 gives the notation, the problem 
formulation and the assumptions. Section 3 deals with the homoscedastic case. First 

it gives a review of the OLS and GLS tests, including an improved approximation 
to the small sample critical value of the OLS test. Next it gives a power comparison 
between the OLS test and a test proposed by L?uter. Section 4 derives extensions of 

the OLS and GLS tests to the heteroscedastic case. Section 5 gives some concluding 
remarks. The appendix gives derivations of asymptotic power expressions of the 

OLS and L?uter 's tests required for the power comparison in Section 3. 

2. Notation and preliminaries 

Suppose that there are two independent treatment groups with n\ and n^ subjects 
on each of whom m > 2 endpoints are measured. Treatment 1 is the test treatment 

and treatment 2 is the control. Let Xijk denote the measurement on the kth endpoint 
for the jth subject in the ?th treatment group. For treatment group i, assume 

that Xij = (xiji,Xij2, ? ? ?, XijmY, j = 1? 2,..., n?, are independent and identically 
distributed (i.i.d.) random vectors from a multivariate normal (MVN) distribution 

with mean vector ?? = (?a, ??2, ? ? ?, ?im)' and covariance matrix S^ (? = 1, 2). In 

the homoscedastic case, we assume S? = S2 = S (say). The elements of S are 

akk = Vai(xijk) and oki = Cov(xijk,Xije) (1 < k < ? < ra). 
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The corresponding correlation matrix will be denoted by R with elements 

C^lcf 
pki = CorrfajkiXiji) = (1 < fc < i < m). 

y/(7kkaee 

In the heteroscedastic case, the elements of S? will be denoted by a^ki (1 < k < ? < 

t?) and the corresponding correlation matrices will be denoted by ?? = {?? k?] (i = 

1,2). 
Let d = ?? ? ?2 = (??, ?21 ? ? ? ??m)' denote the vector of mean differences. To 

establish an overall treatment effect, a global null hypothesis of no difference is 

tested against a one-sided alternative 

H0 : d = 0 vs. i/i : d ? 0+, (1) 

where 0 is the null vector and 

?+ = {d\d> 0,6^0} 

is the positive orthant. 

Let ??. = (??.?,??.2, ? ? ? ,XimY denote the vector of sample means of the ?? 

subjects from the ?th group and let ?? denote the sample covariance matrix from the 

?th group with i/? = n? ? 1 degrees of freedom (d.f.) (? = 1,2). In the homoscedastic 

case, we use the pooled estimate of S given by S = {(ni 
? 1)S? + (n2 ? 

1)S2}/(?? + 

n2 ? 
2) with ni + ?2 ? 2 d.f. Denote the elements of S by ak? (1 < fc < ? < ra). 

3. Homoscedastic case 

3.1. OLS and GLS Tests 

O'Brien (1984) considered a simplified version of the hypothesis testing problem 

(1) obtained by restricting the mean difference vector d = ?? ? 
?2 to a ray 

??^/s??,..., y/o^mmY where ? > 0. In other words, if ?k/y/akk = ?^ denotes the 

standardized treatment effect for the fcth endpoint then O'Brien assumed that 

Afe = ? > 0 for all fc. In that case the hypothesis testing problem (1) simplifies 
to 

i/o : ? = 0 vs. Hx : ? > 0. (2) 

O'Brien solved this problem by using a univariate regression framework that models 

the standardized responses as 

yiJ-fc = 
-^ 

= 
-^= + ?iiifc+ciifc (i = l,2; l<j<ni; 1 < fc < ra), (3) 

y/0~kk y/&kk ? 

where ?* = (??* + ?2k)/^,Ujk = +1 if i = 1 and -1 if ? = 2, and eijk ~ N(0,1) 
r.v.'s with correlations 

Corr(eijfc, ei'i'i) = pkt if ? = ?' and j = f, CoTT(cijk, e^) = 0 otherwise. 

Note that the vectors y^ 
= (y?ji, yij2,..., yijm)' are independent, each with corre- 

lation matrix R = {pke}. 

Assuming that R is known, O'Brien showed that the OLS estimate of ? and its 

standard deviation (SD) equal 

? _ J7(yi. ~?2?) _^ 
X)LS 

m ?*..-*,.. and SD(AOLS) - 

1^^)^), 
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where j is a vector of all l's of an appropriate dimension. Therefore the OLS statistic 

with R replaced by the sample correlation matrix R equals 

(?) V* 

_ , nin2 
?OLS ? rf(Vv -V2.) 

SD(A) V ni + n2 

where t is a vector of the ?-statistics, 

ft 

\?f?j 
J 

yjf?? 

(4) 

/ mn2 (x\.k~x2k\ n . , . ? ,_. 

V ni + n2 V V^fcjfc / 

for comparing the treatment and control groups on the individual endpoints. Each 

tk is marginally ?-distributed under Hok with nj + 712 - 2 d.f. 

Since the errors ?f in the regression model (3) are correlated, one may prefer 
the generalized least squares (GLS) estimate of ? (which is also its MLE) to the 

OLS estimate. Assuming that R is known, O'Brien showed that 

?^ = 
?^1^? 

and 8?(?^) = 
?^?^)('). 

fRlj V V "1*2 J\fR ljJ 

The test statistic using this GLS estimate with the estimated correlation matrix R 

substituted in place of R equals 

? ,-/./^-i,_ _.. .,^-i 
A / ?.? no / ? 

?GLS = 

SD(A) 

/ ni?2 fj'R (vi. -y2)\ _ J'R * /ftx 

'^K?f?FT?-f?F? 

(6) 

Both the OLS and GLS statistics are standardized weighted sums of the individ- 

ual ?-statistics for the ra endpoints. The OLS statistic uses equal weights, while the 

GLS statistic uses unequal weights determined by the sample correlation matrix JR. 

If some endpoint is highly correlated with the others then the GLS statistic gives 
a correspondingly lower weight to its ?-statistic. The convergence of ?GLS to the 

standard normal distribution is slower than that of ?0ls because of the use of the 

estimated correlation matrix R both in the calculation of AGLS and SD(AGLS). Also, 
the simulation study by Reitmeir and Wassmer (1996) has shown that the powers 
of the OLS and GLS tests are comparable when used to test subset hypotheses in 

closed testing procedures. Finally, the linear combination of the tk-statistics used in 

the GLS test can have some negative weights, which can lead to anomalous results; 
this problem does not occur with the OLS test. For all these reasons, the OLS test 

is preferred. 
The exact small sample null distribution of ?OLs is intractable. O'Brien (1984) 

proposed to approximate it by the ?-distribution with n\ + n2 ? 2ra d.f. For large 

sample sizes, the standard normal (z) distribution may be used as an approximation; 

however, this approximation is liberal for small sample sizes. The ?-approximation 
is exact for ra = 1 and conservative for ra > 1 if the d.f. is small. For example, if 

m = r?2 = 10 and ra = 8, which gives ? ? 
4, the type I error rate is around 0.025 

when nominal ct = 0.05. Therefore we investigated a better approximation to the 

d.f. of the ?-distribution obtained by empirically matching the second moment with 

the actual distribution of ?OLs (generated via simulation assuming independence of 

the endpoints). The resulting approximation is given by 

? = o.5(ni + n2 - 
2)(1 + 1/ra2). 
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Table 1: Simulated type I error probability of the OLS test using the proposed 

approximation for the degrees of freedom of the ?-distribution (nominal a = 0.05) 

Results for ? = 0.0 Results for ? = 0.5 

ra ra 

m n2 2 4 6 8 10 2 4 6 8 10 

5 5 0.051 0.049 0.053 0.051 0.050 0.043 0.043 0.041 0.040 0.042 

10 10 0.051 0.050 0.049 0.047 0.051 0.049 0.046 0.047 0.047 0.047 

15 15 0.050 0.052 0.050 0.051 0.050 0.044 0.050 0.044 0.047 0.046 

20 20 0.050 0.051 0.046 0.052 0.053 0.049 0.047 0.050 0.049 0.048 

25 25 0.051 0.048 0.047 0.050 0.048 0.054 0.050 0.051 0.047 0.046 

5 10 0.050 0.050 0.052 0.052 0.048 0.045 0.045 0.042 0.042 0.043 

5 15 0.053 0.045 0.049 0.050 0.051 0.045 0.047 0.044 0.048 0.044 

5 20 0.053 0.050 0.049 0.048 0.048 0.050 0.048 0.052 0.045 0.044 

10 15 0.048 0.052 0.051 0.049 0.052 0.050 0.045 0.048 0.047 0.048 

10 20 0.050 0.052 0.051 0.050 0.050 0.044 0.048 0.049 0.049 0.049 

All estimates are based on 10,000 replications. 

This approximation is exact for ra = 1. For large ra, we get ? ? 0.5(ni + ri2 ? 
2). 

Simulation results in Table 1 using 10,000 simulated datasets indicate that this 

approximation controls the type I error probability very accurately for uncorrelated 

endpoints, within ?2SE = ?0.004 of the nominal 0.05 level for all configurations. 
For correlated endpoints with equal ? = 0.5, the approximation was found to be 

slightly conservative for some configurations, with type I error rates ranging between 

0.04 and 0.05 for the settings studied. Simulations for other type I error probabilities 

(a = 0.01,0.10) are omitted for brevity, but they also indicate accurate control of 

the type I error rate. 

3.2. Comparison of the OLS test with L?uter's SS test 

L?uter (1996) proposed a class of test statistics for the hypotheses (1) having the 

property that they are exactly ?-distributed with n\ + 712 ? 2 d.f. under H0. Recall 

that ??. = (??.\, x~i'2,.. ?, Xi-mY denotes the vector of sample means for the ?th group 

(? = 1,2) and let 

__ n{X \. + U2X2? t? ? ? \' ?.. = -.- = [X..i,X..2,. ..,X..mj 
n\ + n2 

denote the vector of overall sample means. Define the total cross-products matrix 

by 

2 ?? 2 

?=1 j=l i=l 

Let w = w(V) be any ra-dimensional vector of weights depending solely on V 

such that tu f 0 with probability 1. Using the results from the theory of spherical 
distributions (Fang and Zhang 1990), L?uter (1996) showed that 
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is exactly ?-distributed with ?? + n2 ? 2 d.f. under Ho. Various choices for w were 

discussed by L?uter, Kropf and Glimm (1998). We will focus on the standardized 

sum (SS) statistic (denoted by ?ss) for which w = (l/y/v?, l/y/v22, ?. ?, l/v^mm)', 
where 

2 n? 

Vkk = 
S S (?#* 

~" 
^"fc) 

i=l j=l 

is the fcth diagonal element of V. 

The SS statistic can be expressed as a ?-statistic for comparing the treatment 

and control groups based on the sum of the standardized observations for each 

patient 

Vij 
k=i ?Vkk 

Thus 

where 

/ ?\?2 
(Vi. 

-y2\ 

V ni + n2 \ s? ) 

- *v* r ??\ a- J^UTTjUiyij-y,)2 

The OLS statistic is the sum of the ?^-statistics (5), which are obtained by stan- 

dardizing the individual endpoints by their pooled within group sample standard 

deviations. On the other hand, the SS statistic is obtained by standardizing the 

data on each endpoint by its pooled total group sample standard deviation and 

then computing an overall ?-statistic. Because the total pooled standard deviation 

overestimates the true standard deviation since it includes the between treatment 

group difference, the power of the SS test would be expected to be lower. We show 

this in a special case by comparing the powers of the two tests when n\ ? U2 = ? 

(say) and ? ?? oo. 

The limiting null and non-null distributions of ?OLs and ?ss are normal, and their 

asymptotic powers for a-level tests can be expressed as follows (for derivations, see 
the Appendix). Let 

ak = _.- and bk = . (1 < fc < ra), 
V*** 

,J(2 + \l/2)akk 

where A* = Sk/y/akk as defined before. Then 

Power0Ls 

and 

Power. 

= 

f("*a 
+ 

?\/?) 

where a = (a?, a2,...,am)', b = (b\,b2,..., bm)' and zQ is the (1 ? a)th quantile of 

the standard normal distribution,. 
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Therefore 

a'd t? d 
PoweroLs > Powerss <?=F > _ > ^-- (7) 

VaTSa Vt?Xb 

It is easy to show that 

_?L = S??^ and 

?^_ _ S?,??*/\? 
+ *?/4 

?/5'S6 

where pjt< = 1 if A; = i. Comparison of the powers of the two tests reduces to 

comparing the two expressions above. 

Consider the case ?? > 0 and ?* = 0 for k > 1. Then we have 

a'd ?. 

Va'Ea \?S,7=? S?=? Pu 

and 

b'S _ ??/^/l + ??/4 

?/67S6 
tfau S^2?? + 2SG=2 

(??*/>/? 
+ 

??/4) 
+ 1/(1 + ??/4) 

Simple algebra shows that the second inequality in (7) is strict in this case. Thus, if 

only one endpoint has a positive treatment effect then the OLS test is asymptotically 
more powerful to detect this effect than the SS test. In fact, 

lim 
A^oo y/b'Y,b 

= hm - ??- 

???>?? 

a/?G=2SG=2^ 
+ 2SG=2 

(pik/y/?+X?/? 
+ 1/(1 + ??/4) 

/\-^t? \-?771 
V?-rfc=2?-*=2P** 

< 00. 

Therefore the asymptotic power of the SS test is strictly less than 1 when ?? ?? oo. 

This undesirable property of the SS test has been noted by Frick (1996). 
Next consider the case Xk = A > 0 for all fc, which is the assumption underlying 

the OLS test. Here we have 

a'd t?6 mX 

v^7^ ?^S? VE?liE?LiPu' 

and therefore PowerOLs = Powerss asymptotically. Note that this configuration is 

typically of most interest, since both tests are designed to have high power when 

\k ? X for all fc, and are not necessarily designed to perform well when the treatment 

effects are highly variable. 
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Table 2: Simulated powers of the OLS and SS tests (no. of replications = 10,000, 
a = 0.05) 

ra ? 

? = 0.0 

d' OLS SS 

? = 0.5 

OLS SS 

4 10 (3,0,0,0) 0.920 0.614 0.628 0.323 

(1.5,1.5,0,0) 0.930 0.894 0.633 0.564 

(1.0,1.0,1.0,0) 0.931 0.930 0.635 0.634 

(0.7,0.7,0.7,0.7) 0.905 0.908 0.581 0.602 

(1.0,1.0,0.5,0.5) 0.935 0.933 0.637 0.646 

50 (1.2,0,0,0) 0.904 0.845 0.594 0.516 

(0.6,0.6,0,0) 0.909 0.903 0.594 0.582 

(0.4,0.4,0.4,0) 0.912 0.912 0.584 0.585 

(0.3,0.3,0.3,0.3) 0.903 0.904 0.588 0.591 

(0.4,0.4,0.2,0.2) 0.911 0.911 0.595 0.596 

8 10 (2,0,0,0) 0.903 0.747 0.393 0.259 

(1,1,0,0) 0.908 0.892 0.393 0.372 

(0.7,0.7,0.7,0) 0.931 0.930 0.426 0.437 

(0.5,0.5,0.5,0.5) 0.912 0.913 0.399 0.416 

(0.6,0.6,0.3,0.3) 0.858 0.858 0.349 0.363 

50 (0.9,0,0,0) 0.932 0.907 0.441 0.401 

(0.4,0.4,0,0) 0.882 0.878 0.374 0.372 

(0.3,0.3,0.3,0) 0.936 0.936 0.431 0.431 

(0.2,0.2,0.2,0.2) 0.876 0.876 0.382 0.379 

(0.3,0.3,0.15,0.15) 0.934 0.933 0.437 0.439 

The d-vector for ra = 8 equals the two d vectors for ra = 4 put together, i.e., 

<*8 = (<*4><*4)? 

Table 2 gives simulation results for the powers of the OLS and SS tests conducted 

at a = 0.05 for some selected cases with ra = 4 and 8 endpoints. The ? i.i.d. data 

vectors for the treatment group X\j, j = l,...,n, are each generated from an 

MVN(?, S) distribution, where S^ = 1 and S^ = ? for ? f j. Similarly, the 

? i.i.d. vectors for the control group, x2j, j = l,...,n, are generated from an 

MVN(0, S) distribution. Correlation values of ? = 0 and 0.5, and sample sizes of 

? = 10 and 50 were investigated. Four dimensional vectors denoting d are given in 

the table. The d vector for ra = 8 equals the two d vectors for ra = 4 put together, 
i.e., ?8 = (d'^,d'^?'. A total of iV = 10,000 replications were generated for each 

simulation run. 

We see that the difference in the powers of the OLS and SS tests is not very 

large for most configurations. When there is a large treatment effect on one or two 

endpoints but no treatment effect on the other endpoints, the SS test suffers from 

the anomalies discussed before, resulting in a substantial loss of power relative to 

the OLS test; however, the OLS test is also not suited well for this configuration. 
When all the endpoints have an effect, the correlation is moderate, and the sam- 

ple size is small, the SS test tends to perform slightly better than the OLS test 

(1-2% higher power). This is probably due to the slightly conservative nature of 

the ?-approximation to the OLS statistic for correlated endpoints. In all other sit- 
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uations, the two procedures perform similarly, and both are adequately suited for 

comparing two groups when the treatment effect is expected to be similar across 

endpoints. 

4. Heteroscedastic case 

Pocock, Geller and Tsiatis (1987) proposed an ad-hoc extension of O'Brien's GLS 

test to the heteroscedastic case as follows. Assume that S? and S2 are known. Then 

the statistic for comparing the treatment with the control on the fcth endpoint is 

zk= , 
*l*-**h 

(l<fc<m). (8) 

Let ? ? 
(z\,z2,...,Zm)' and R = (n\R\ + ?2?2)/(^? + ^2)? In analogy with (6), 

Pocock et al. proposed the statistic 

_ j'Rlz 
^GLS ? 

y/j'R'j 

Unfortunately, this statistic does not have the standard normal distribution under 

Hq as claimed by Pocock et al. because the covariance (correlation) matrix of ? is 

not R, but G = {7fc?} with elements 

Ikt = 
,f . ; w ; ; ? (1 < fc < ^ < m). 

V (s?,**/?? + a2,kklri2)(aiyaln\ + s2^?/?2) 

In the following we correctly derive the OLS and GLS tests in the heteroscedastic 

case. 

4.1. OLS test 

We use the following definition for the standardized treatment effect 

Afc= . h= (l<fc<m). 

As in O'Brien (1984), assume that Xk = A > 0 for all fc. To test the hypotheses (2), 
standardize the observations as 

yijk = tJ* ? (? = 1,2; 1 < j < n?; 1 < fc < ra). 
\/G\,kk -T&2M 

Then y^ 
= (yij\,yij2, - - ,yijm)' are independently distributed as MVN(??,I\) 

where ?? has the elements 

&fc= . M<*= (l<fc<m) 
y/^\ykk H-<72,fc/c 

and ?? has the elements 

UM = 
,, ?iM.( (i = l,2;l<k<e<m). 

VWi.fefc + V2,kk)\aiM + s2?) 

Note that ?ifc ? &k = X for all fc. Also note that G? and G2 are not correlation 

matrices, and G = G? -h G2 if ni = 712. 
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The hypotheses (2) can be tested by using a univariate regression framework 

analogous to (3) 

y%jk =?k + -zlijk + tijk (i = l,2;l<j <rii; 1 < fc < ra), (9) 

where & = fak + &*)/2, Ujk = +1 if ? = 1 and -1 if ? = 2, and ??? = (???i, e?i2, 
? ?, tijm)' are independently distributed as N(0, G ?). 

Let ? = A/2 and let ? = (?, ??,..., ?m)' be the vector of unknown parameters. 
Then the above model can be written as 

y = ?T + e, 

where y = (y'n,.. .,y?ni,y^,... ,yf2nJ, D = (D[,...,D[,D,2,...,Df2)f, ? = 

?? Tl2 
(?>??>--,?t?? and ? = 

(e'n,...,e'lni,c'2l,...,e'2ri2Y. In the above, Di = (j,I) 
and D2 = (?j,I) where j is an m-dimensional vector of l's and I is the identity 
matrix of dimension ra. 

The OLS estimator of ? is the first component of ? = (D'D)~lD'y. Now, 

D'D = (ni + n2)ra (ni - 
n2)f 

(n\ - 
n2)j (ni + n2)I 

The first row of (D'D) 
1 

required to compute ? equals 

+ n2_ -(ni -ri2)f\ 
?* 4niri2ra / 

Also, 

Uni 

D'y = f(niVi? -^2y2.) 
my ?. -h ?2?/2. 

where yx. and y2 are the vectors of sample means of the standardized data. Hence, 

?=[(D'D)-iD'v]1 
= 

2m 

So the OLS estimate of ? and its standard deviation equal 

? = 2? = ^1^? and SD(A)=<J',(ri/ni 
+ r2/n2)j'} 

ra ra 

Then the OLS test statistic, using the estimated covariance matrices, is 

1/2 

?OLS ? -? ^ ? j'iVv -1/2 ) 

SD(A) 
{/(fx/m 

+ 
ra/naW} 

where G? = 
{7^} and 

%ki 
= 

1/2? 

&iM 

yJfilM + <?2,fcA:)(??i,? + ^2,?) 

This statistic is asymptotically standard normal under i/o? 
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Let 

** = -7?= 
(xVk - X2-k) 

(1 < fc < ra) 

be the ?-statistics for comparing the treatment and control groups on the individual 

endpoints. They are marginally approximately ?-distributed under Hok with d.f. 

estimated by the Welch-Satterthwaite formula 

(?l,kkln\ +52,?*?*2)2 
I/* = Z3 (1 < fc < ra). 

5?ffcfc/n?(ni 
- lj + s??/??(?2 

- 
1) 

For ni = n2 = n, analogous to (4), the ?OLs test statistic simplifies to 

A ft 
?OLS ? 

SD(A) ?'fj)i/2' 

where G = G? + G2 is the sample estimate of the correlation matrix G = G? + G2 
between the numerators of the tk statistics. 

4.2. GLS teat 

Next we obtain the generalized least squares (GLS) estimate of ?. The GLS estimate 

of ? is given by (D'V~lD)~1D'V~1y, where V is the covariance matrix of the 

e's, which has a block diagonal structure given by 

V = 
0 

0 

0 0 

G? 0 

0 r2 

0 

0 

0 

Then 

D'V-'D = nij'T^j + nij'T^j nij'TZ1 
- 

n2j'T2l 
? 

mrpj 
- 

n2T?1j mrj"1 + ?2G2 

The first row of (D'V~lD)~1 required to compute ? equals 

\d* d y 

where 

-i\-i 

Then 

and 

C = 
(?^?1 -?2G2?)(??G?? +n2T2x) 

d = 
/[(/-COrrVni + iZ + CiriV^J 

D'Vly = 

and 

" 
f (niT^y^ -n2Y2ly2) 

0 = \(D'V-*D)-lD'V-'yV = 2/(ri/ni+r2/n2)-1(yi.-!/2.) 
j 1 ^ 
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So the GLS estimate of ? and its standard deviation equal 

t 4*'(G?/??? + T2/n2)-l{yl. - y2.) and 
a 

SD(A) = 

d 

d 

Hence the GLS test statistic, using the estimated covariance matrices, is 

t = 
? ?'(f i/m + Tifa)-1?!. - vt.) 

GLS 
SD(A) {j'iTxlm +f2/n2)-'j}V2 

This statistic is also asymptotically standard normal under Ho. However, because it 

uses estimates of the covariance matrices in the weights, it has a slower convergence 
to the standard normal. 

Our simulations show that use of the standard normal critical points in per- 

forming the ??ls or ?gls tests give too high type I error rates for small sample sizes 

(ni,n2 < 50). Unfortunately, better small sample approximations are not available 

at this time. 

In the case of equal sample sizes, analogous to (6), this reduces to 

?GLS ? 

(i'f"^?)1/2 

with t and G defined as above. We see that, as in the homoscedastic case, under 

equal sample sizes, both methods are based on weighted sums of the ?-statistics for 

testing each endpoint individually. The OLS statistic uses equal weights, while the 

GLS statistic uses unequal weights determined by the two covariance matrices. 

5. Concluding remarks 

In this paper we presented some refinements and extensions of the OLS and GLS 

tests. These tests are thus made more widely applicable. In future research it would 

be useful to find a good small sample approximation to the critical points of ?0ls 
and ?gls in the heteroscedastic case. 

Appendix 

Derivation of the power expressions for Laut er's SS test and O'Brien's 

OLS test 

Let 
,. ni t? t? _ 

_ _ -i V^ V-'* %ijk _ V-?* %ik 

Ui 
?=i *=i 

yTLi YTjii^ijk 
- ?..*)2 fc=i v/SST kk 

where SST/cfc = vkk is the corrected total sum of squares for the fcth endpoint. Then 

L?uter's SS test statistic equals 

, Vi?- 2/2- 
?ss ? -?- 

SDf?.-ya.) 

Thus the SS test statistic is a standardized version of 

m _ _ 
Zi* - X2k - _- _ T^ Xl-fc - x2k 
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In contrast, the OLS test statistic is a standardized version of 

m __ 

Zl 
X\k - X2k V^ ?1?* ~~ X2ik __ _ V">_*lk 

- 
X2k_ _ ?^ 

*=i7E?=iE"ii(*iifc-xi.fc)3 
fe ^^ 

where SSE^fc is the pooled error sum of squares for the fcth endpoint. Note that the 

OLS statistic uses the within group sum of squares to scale each endpoint, while 

the SS statistic uses the total sum of squares. 
We next examine the asymptotic distribution of each test statistic. Assuming 

ni = 7i2 = ? for simplification, note that 

un = 
Vn(xi. 

- 
?2.) 

~ ???(^/?d,2?\. 

Now consider L?uter's test. First, for large n, 

E(SSTfcfc) = 
E( Y^(xijk 

- Xi.k)A 
+e( Y^(xi.k 

- 
x..k)2) 

= 2{n-l)akk + akk + 
T^- 

? nakk(2 + X2k/2), 

where ?*; = ?k/y/akk- We know that 

C^ = 

^k^Ck=^2 + k/2)akk 
forfc = 1'-?- 

Let Cn = (ci,n,..., cm,n) and c = (ci,..., Cm). Then by Slutsky's Theorem, 

--=?- = cnun ?? N\Jnc 6,2c Eel 

and therefore, 
_ _ c'nun c M(c'6 2dVc\ 
*--** = 

?^N\^-??ry 

Vx/??c'Ec"' / 

Thus, under J?i, 

Next consider O'Brien's test. Since 

E(SSEk) ? 2nakk, 

for large n, we know that 

? . 1 
dfe- = 

y/m. 
^dk = 

ts 
forfc=1??????? 

Let dn = (di,n,...,dm,n) and d = (di,..., dm). Then by Slutsky's Theorem, 

d'nun -?* 
N(yHd'S,2d"Zd\ 
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and therefore 

zi. - z2. 

Thus, under Hi, 

d'nun 
C)N(d'6 

2d'Ed\ 

t -^ lOLS ' 
\v/2d7I?<?' / 

The asymptotic power of the L?uter test is 

Powerss = P(tSs > *a\d) 

1 
V 

Q 
V2dT-c) 

- 
#(-,. 

+-SAY 
y/2d^J' 

Similarly, the asymptotic power of the O'Brien test is 

Power0Ls = ^(?ols > za\S) 

\ 
a 

\/2d"Ld) 

V V2drSdJ 
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